Select Page

Jasmina Kumer

OŠ Cerkvenjak-Vitomarci

Slavko Toplak

OŠ Cerkvenjak-Vitomarci

Iris Breznik

OŠ Cerkvenjak-Vitomarci

Štefka Smej

OŠ Cerkvenjak-Vitomarci

Seminarske naloge iz matematike 8. razred
Seminarske naloge iz matematike 9. razred


Naloge za vajo (7. razred):

  • Ulomki – vaje (J. Kumer) Ulomki-vaje_rešitve
  • Vaje za preizkus znanja – trikotnik (J. Kumer)
  • Rešitve vaj za preizkus znanja – trikotnik

Naloge za vajo (8. razred):

  • Vaje: večkotniki, krog, Pitagorov izrek (J.Kumer)

Naloge za NPZ 9. razred:

  • MAT2004
  • MAT2005
  • MAT2006
  • MAT2008
  • MAT2009
  • MAT2010
  • MAT2011
  • MAT2012
  • MAT2013
  • MAT2014

Tekmovanje za Vegovo priznanje:

Šolsko tekmovanje
(bronasto priznanje)
1. – 9. razred četrtek, 16. marec 2017, ob 1300 (I.triada ob 1100)
Državno tekmovanje
(srebrno priznanje)
(zlato priznanje)
5., 6., 7., 8., 9. razred sobota, 22. april 2017, ob 900

Spletne povezave:

DMFA – Društvo matematikov, fizikov in astronomov Slovenije: http://www.dmfa.si/
(na tej strani se nahaja elektronska revija Brihtnež z mnogimi vsebinami za dodatno učenje matematike in kot priprava na tekmovanja)

Fakulteta za matematiko in fiziko: http://www.fmf.uni-lj.si/
Pedagoška fakulteta Maribor: http://www.pfmb.uni-mb.si/
Presek: list za mlade matematike, fizike, astronome in računalnikarje: http://zaloznistvo.dmfa.si/presek/


Zanimivosti:
Eulerjev izrek: “Za število vozlišč, daljic in ploskev velja naslednja zveza: a + b – c = 1, kjer je

  • a – število vozlišč
  • b – število ploskev
  • c – število daljic oz. povezav

Za različne primere preveri veljavnost.
Podobna zveza velja za telesa. Razišči!


Številski sistemi: število 2005

1. Število 2005 v različnih številskih sistemih:

2005 = 11111010101 [2]
  2202021 [3]
  133111 [4]
  31010 [5]
  13141 [6]
  5563 [7]
  3725 [8]
  2667 [9]
  1563 [11]
  505 [20]

Leto 2047 se bo v dvojiškem sistemu zapisalo s samimi enicami, in sicer:

2047 [10] = 11 111 111 111 [2],

že naslednja letnica 2048 pa bo naslednje oblike:

2048 [10] = 100 000 000 000 [2].

Iz zgornje tabele hitro najdemo še eno “lepo” številko, in sicer 2006 v trojiškem sistemu:

2006 [10] = 2202022 [3]

2. Število 2005 kot razcep na prafaktorje:

2005 = 5 . 401

3. Število 2005 kot razlika in vsota kvadratov:

2005 = 2032 – 1982 ( ??? – hm, kako se pa to najde )

2005 = 182 + 412

4. Zastavimo si nalogo in zapišimo število 2005 s samimi peticami (enicami,…). Tu navajam samo dve možnosti:

2005 = 55-555-555-5-5

2005 = 1111+11 . (1+1+1)1+1+1+1 +1+1+1

5. Z malo truda lahko pokažemo, da se 2005 ne da zapisati npr. kot:

2005 = 12 + 22 + 32 + 42 + …

2005 = 11 + 22 + 33 + 44 + …

Kmalu ali že sedaj lahko začnemo raziskovati število 2006, čeprav ne iščemo v tem numeroloških ali astroloških zakonitosti, pač pa enostavno odkrivamo matematične zakonitosti. Le te so že same zase dovolj lepe.
(S. Toplak)


Naloga množenja:

Videti je zahtevno, pa ni!
V nakazanem računu množenja zamenjaj kvadratke z desetiškimi števkami tako, da bo dobljeni račun pravilen.

Rešitev:

– število 3535 je produkt prvega števila in sredinske števke drugega, zato sta možnosti tu dve, in sicer: 3535:5=707 in 3535:7=505,
– prva in zadnja števka drugega ševila je 1, saj le tako dobimo produkt trimestno število,
– na koncu še premislimo o obeh možnostih; da so v rezultatu popolnjena vsa mesta, je edina možnost: 707 . 151 = 106757.


Število trikotnikov:

Koliko trikotnikov je na sliki?

Rešitev: 12 trikotnikov

“Tablice so svetovne”, učenci 8. razreda – skupina 2; 2014 (učilnica matematike)

Vam je prispevek všeč? Lahko ga delite.
Email this to someonePrint this pageShare on FacebookTweet about this on TwitterShare on LinkedInPin on Pinterest
(Skupno 364 obiskov, današnjih obiskov 1)
Dostopnost